服务器之家:专注于VPS、云服务器配置技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - 基于Matlab实现嗅觉优化算法的示例代码

基于Matlab实现嗅觉优化算法的示例代码

2022-12-01 14:27电力系统与算法之美 C/C++

嗅觉剂优化是一种新颖的优化算法,旨在模仿气味分子源尾随的药剂的智能行为。本文将利用Matlab实现这一智能优化算法,需要的可以参考一下

1.概述

嗅觉剂优化是一种新颖的优化算法,旨在模仿气味分子源尾随的药剂的智能行为。该概念分为三个阶段(嗅探,尾随和随机)是独特且易于实现的。此上传包含 SAO 在 37 个 CEC 基准测试函数上的实现。

基于Matlab实现嗅觉优化算法的示例代码

2.37 个 CEC 基准测试函数代码

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
function [lb,ub,dim,fobj] = Select_Function(F)
 
 
switch F
    case 'F1'
        %Admijan
        fobj = @F1;
        lb=[-1 -1];
        ub=[2 1];
        dim=2;
      case 'F2'
        %Beale
        fobj = @F2;
        dim=2;
        lb=-4.5*ones(1,dim);
        ub=4.5*ones(1,dim);
        case 'F3'
       %Bird
        fobj = @F3;
        dim=2;
        lb=-2*pi*ones(1,dim);
        ub=2*pi*ones(1,dim);     
         case 'F4'
       %Bohachevsky
        fobj = @F4;
        dim=2;
        lb=-100*ones(1,dim);
        ub=100*ones(1,dim);
    case 'F5'
%         Booth
        fobj = @F5;
        dim=2;
        lb=-10*ones(1,dim);
        ub=10*ones(1,dim);
    case 'F6'
       %Branin RCOS1
        fobj = @F6;
        lb=[-5,0];
        ub=[10, 15];
        dim=2;
    case 'F7'
        %Branin RCOS2
        fobj = @F7;
        dim=2;
        lb=-5*ones(1,dim);
        ub=15*ones(1,dim);
    case 'F8'
        %Brent
         fobj = @F8;
        dim=2;
        lb=-10*ones(1,dim);
        ub=10*ones(1,dim);
    case 'F9'
        %Bukin F2
         fobj = @F9;
        dim=2;
        lb=[-15 -3];
        ub=[-5 3];
      case 'F10'
        %six-hump
         fobj = @F10;
        dim=2;
        lb=-5*ones(1,dim);
        ub=5*ones(1,dim); 
    case 'F11'
        %Chichinadze
        fobj = @F11;
        dim=2;
        lb=-30*ones(1,dim);
        ub=30*ones(1,dim);
   case 'F12'
        %Deckkers-Aarts
        fobj = @F12;
        dim =2;
        lb=-20*ones(1,dim);
        ub=20*ones(1,dim);
    case 'F13'
        %Easom
        dim=2;
        fobj=@F13;
        lb=-10*ones(1,dim);
        ub=10*ones(1,dim);  
    case 'F14'
        %Matyas
        fobj = @F14;
        dim=2;
        lb=-10*ones(1,dim);
        ub=10*ones(1,dim);  
     case 'F15'
        %McComick
        fobj = @F15;
        dim=2;
        lb=-10*ones(1,dim);
        ub=10*ones(1,dim);        
    case 'F16'
        %Michalewicz2
        fobj = @F16;
        dim=2;
        lb=0*ones(1,dim);
        ub=pi*ones(1,dim);        
     case 'F17'
        %Quadratic
        fobj = @F17;       
        dim=2;
        lb=-10*ones(1,dim);
        ub=10*ones(1,dim);        
    case 'F18'
        %Schaffer
        dim=2;
        fobj = @F18;               
        lb=-100*ones(1,dim);
        ub=100*ones(1,dim);
    case 'F19'
        %StyblinskiTang
        fobj = @F19;               
        dim=2;
        lb=-5*ones(1,dim);
        ub=5*ones(1,dim);       
     case 'F20'
        %Box-Betts
        fobj = @F20;                       
        dim=3;
        lb=[0.9 9 0.9];
        ub=[1.2 11.2 1.2];
    case 'F21'
        %Colville
        fobj = @F21;                       
        dim=4;
        lb=-1*ones(1,dim);
        ub=1*ones(1,dim);         
    case 'F22'
        %Csendes
        fobj = @F22;                       
        dim=4;
        lb=-1*ones(1,dim);
        ub=1*ones(1,dim);        
    case 'F23'
       %  Michalewicz 5
        fobj = @F23;                       
        dim=5;
        lb=0*ones(1,dim);
        ub=pi*ones(1,dim);         
    case 'F24'
        %Miele Cantrell
        dim=4;
        fobj = @F24;                       
        lb=-1*ones(1,dim);
        ub=1*ones(1,dim);
    case 'F25'
        % Step
        fobj = @F25;                       
        dim=5;
        lb=-100*ones(1,dim);
        ub=100*ones(1,dim);
    case 'F26'
        %Michalewicz
        fobj = @F26;                               
         dim=10;
        lb=0*ones(1,dim);
        ub=pi*ones(1,dim);   
    case 'F27'   
        %Shubert
        fobj = @F27;                               
        dim=5;
        lb=-10*ones(1,dim);
        ub=10*ones(1,dim);       
    case 'F28'
        %Ackley
        dim=30;
        fobj = @F28;                                       
        lb=-32*ones(1,dim);
        ub=32*ones(1,dim);        
    case 'F29'
        %Brown
        fobj = @F29;                               
        dim=30;
        lb=-1*ones(1,dim);
        ub=4*ones(1,dim);       
    case 'F30'
        %Ellipsoid
        dim=2;
        fobj = @F30;                                       
        lb=-5.12*ones(1,dim);
        ub=5.12*ones(1,dim);         
    case 'F31'
        % Grienwank
        fobj = @F31;                                               
        dim=30;
        lb=-100*ones(1,dim);
        ub=100*ones(1,dim);
    case 'F32'
        %Mishra
        fobj = @F32;                                               
        dim=30;
        lb=0*ones(1,dim);
        ub=1*ones(1,dim);
    case 'F33'
        %Quartic
        dim=30;
        fobj = @F33;                                                       
        lb=-1.28*ones(1,dim);
        ub=1.28*ones(1,dim);
    case 'F34'
        %Rastrigin
        fobj = @F34;                                               
        dim=30;
        lb=-5.12*ones(1,dim);
        ub=5.12*ones(1,dim);        
    case 'F35'
        %Rosenbrock
        fobj = @F35;                                                            
        dim=30;
        lb=-30*ones(1,dim);
        ub=30*ones(1,dim);  
    case 'F36'
     %     Salomon
        fobj = @F36;                                                    
        dim=30;
        lb=-100*ones(1,dim);
        ub=100*ones(1,dim);
    case 'F37'
        %Sphere
        fobj = @F37;                                                    
        dim=30;
        lb=-100*ones(1,dim);
        ub=100*ones(1,dim);          
end
end
 
function o=F1(x)
% Adjiman
 o=(cos(x(:,1)).*sin(x(:,2))-x(:,1)./(x(:,2).^2+1));
 
end
function o=F2(x)
  %     Beale
   o=(1.5-x(:,1)+(x(:,1).*(x(:,2)))).^2+(2.25-x(:,1)+(x(:,1).*(x(:,2)).^2)).^2+...
    (2.625-x(:,1)+(x(:,1).*(x(:,2)).^3)).^2;
end
function o=F3(x)
    %     Bird
    o=sin(x(:,2)).*(exp(1-cos(x(:,1))).^2)+cos(x(:,1)).*(exp(1-sin(x(:,2))).^2)...
    +(x(:,1)+(x(:,2))).^2;
end
 
function o=F4(x)
    %     Bohachevsky
    W=0;
    [a,dim]=size(x);
    for i=1:dim-1
        W=W+x(:,i).^2+2.*x(:,i+1).^2-0.3.*cos(3.*pi.*x(:,i+1))-0.4.*cos(4.*pi.*(x(:,i+1)))+0.7;
    end
    o=W;
end
 
function o=F5(x)
        %Booth
    o=(x(:,2)-(5.1*x(:,1).^2/(4*pi*2))+(5*x(:,1)/pi)-6).^2+...
        10*(1-1/(8*pi)).*cos(x(:,1))+10;
end
 
function o=F6(x)
    %     Branin RCOS 1
    o=(x(:,2)-(5.1*x(:,1).^2/(4*pi*2))+(5*x(:,1)/pi)-6).^2+...
        10*(1-1/(8*pi)).*cos(x(:,1))+10;
end
 
function o=F7(x)
%     Branin RCOS 2
    a=1; b=5.1/(4*pi^2); c=5/pi; d=6; e=10; g=1/(8*pi);
    f1=a*(x(:,2)-b*x(:,1).^2+c*x(:,1)-d).^2;
    f2=e*(1-g)*cos(x(:,1)).*cos(x(:,2));
    f3=log(x(:,1).^2+x(:,2)+1);
    o=-1/(f1+f2+f3+e);
end
function o=F8(x)
%Brent
    o=(x(:,1)+10).^2+(x(:,1)+10).^2+exp(-x(:,1).^2-x(:,2).^2);
end
function o=F9(x)
  %Bukin F2
o=(abs(x(:,1)-0.01.*x(:,2).^2))+0.01.*abs(x(:,2)+10);
end
function o=F10(x)
%Camel Six Hump
    o=(4-2.1*x(:,1).^2+(x(:,1).^4)/3).*x(:,1).^2+x(:,1).*x(:,2)+...
        (4*x(:,2).^2-4).*x(:,2).^2; 
end
function o=F11(x)
        %Chichinadze
    o=x(:,1).^2-12*x(:,1)+11+10*cos(pi*x(:,1)/2)+8*sin(5*pi*x(:,1)/2)-...
        ((1/5)^0.5)*exp(-0.5*(x(:,2)-0.5).^2);
end
 
function o=F12(x)
%     Deckkers-Aarts
    o=10^5*x(:,1).^2+x(:,2).^2-(x(:,1).^2+x(:,2).^2).^2+...
        10^(-5)*(x(:,1).^2+x(:,2).^2).^4; 
end
function o = F13(x)
% Easom
o=-cos(x(:,1)).*cos(x(:,2)).*exp(-(x(:,1)-pi).^2-(x(:,2)-pi).^2);     
 
end
function o=F14(x)
    %     Evaluate Matyas
    o=0.26*(x(:,1).^2+x(:,2).^2)-0.48*x(:,1).*x(:,2);
end
function o=F15(x)
  %     McCormick
o=mccormick(x);%
end
function o=F16(x)
    %  Michalewicz2
    [~,d]=size(x);
    W=0;
    for i=1:d
        W=sin(x(:,1)).*sin(i*x(:,i).^2/pi).^2*d;
    end
    o=-W;
end 
function o=F17(x)
   %   Quadratic
    o=-3803.84-138.08*x(:,1)-232.92*x(:,2)+128.08*x(:,1).^2+203.64*x(:,2).^2+182.25*x(:,1).*x(:,2); 
end
function o=F18(x)
        %     Evaluate Schaffer
        [~,d]=size(x);
        w=0;
        for i=1:d-1
            w=w+((x(i).^2+x(i+1).^2).^.5).*(sin(50.*(x(i).^2+x(i+1).^2).^0.1)).^2;
        end
        o=w;
end
    function o=F19(x)
    %  Styblinki's Tang
    [~,d]=size(x);
      W=0;
      for i=1:d
          W=W+(x(:,i).^4-16.*x(:,i).^2+5.*x(:,i));
      end
      o=W.*0.5;
    end
    function o=F20(x)
        % Box-Betts
        [~,d]=size(x);
    W=0;
    for i=1:d
        g=exp(-0.1.*(i+1)).*x(:,1)-exp(-0.1.*(i+1)).*x(:,2)-((exp(-0.1.*(i+1)))-exp(-(i+1)).*x(:,3));
        W=W+g.^2;
    end
    o=W;
    end   
    function o=F21(x)
    %     Colville
    o=100*(x(:,1)-x(:,2).^2).^2+(1-x(:,1)).^2+90*(x(:,4)-x(:,3).^2).^2+...
    (1-x(:,3)).^2+10.1*((x(:,2)-1).^2+(x(:,4)-1).^2)+...
    19.8*(x(:,2)-1).*(x(:,4)-1);
    end   
    function o=F22(x)
        %     Csendes
        [~,d]=size(x);
    aa=0;
    for i=1:d
        aa=aa+x(:,i).^6.*(2+sin(1/x(:,i)));
    end
    o=aa;
    end   
    function o=F23(x)
            % Michalewicz 5
            [~,d]=size(x);
    W=0;
    for i=1:d
        W=sin(x(:,1)).*sin(i*x(:,i).^2/pi).^2*d;
    end
    o=-W;
    end   
    function o=F24(x)
 %Miele Cantrell
    o=(exp(-x(:,1))-x(:,2)).^4+100*(x(:,2)-x(:,3)).^6+...
        (tan(x(:,3)-x(:,4))).^4+x(:,1).^8;
    end
    function o=F25(x)
        %     Evaluate Step
        [~,d]=size(x);
    W=0;
    for i=1:d
        W=W+(floor(x(:,i)+0.5)).^2;
    end
    o=W;
    end
    
    function o=F26(x)
        %     Evaluate Michalewicz 10
        [~,d]=size(x);
        W=0;
    for i=1:d
        W=sin(x(:,1)).*sin(i*x(:,i).^2/pi).^2*d;
    end
    o=-W;
    end
    function o=F27(x)
%     shubert
        [~,d]=size(x);
        s1=0;
        s2=0;
        for i = 1:d
             s1 = s1+i*cos((i+1)*x(1)+i);
             s2 = s2+i*cos((i+1)*x(2)+i);
        end
        o = s1*s2;  
    end   
% F28--Ackley
function o = F28(x)
dim=size(x,2);
o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
end   
    function o=F29(x)
    [~,d]=size(x);
    %     Brown
    a=0;
    for i=1:d-1
        a=(x(:,i).^2).^(x(:,i+1)+1)+(x(:,i+1).^2).^(x(:,i).^2+1);
    end
    o=a;
    end   
    function o=F30(x)
            %     Ellipsoid
     [~,d]=size(x);
        W=0;
        for i=1:d
            W=W+i.*x(:,1).^2;
        end
        o=W;
    end   
    %Grienwank
    function o=F31(x)
    o=griewank(x);
    end
    function o=F32(x)
        %      Mishra
        [~,d]=size(x);
    a=0;
    for i=1:d-1
        a=a+x(:,i);
    end
    aa=d-a;
    b=0;
    for j=1:d-1
        b=b+x(:,j);
    end
    W=abs((1+d-b).^aa);
    o=W;  
    end   
% --Quartic
function o = F33(x)
dim=size(x,2);
o=sum([1:dim].*(x.^4))+rand;
end   
%Rastrigin
    function o=F34(x)
    o=rastrigin(x);
    end
% Rosenbrock
function o = F35(x)
dim=size(x,2);
o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
end
    function o=F36(x)
%     salomon
    x2 = x.^2;
    sumx2 = sum(x2, 2);
    sqrtsx2 = sqrt(sumx2);
    o = 1 - cos(2 .* pi .* sqrtsx2) + (0.1 * sqrtsx2);
    end
function o = F37(x)
%Sphere
o=sum(x.^2);
end
    
    
function o=Ufun(x,a,k,m)
o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end

3.F1 Matlab代码仿真

基于Matlab实现嗅觉优化算法的示例代码

基于Matlab实现嗅觉优化算法的示例代码

到此这篇关于基于Matlab实现嗅觉优化算法的示例代码的文章就介绍到这了,更多相关Matlab嗅觉优化算法内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://blog.csdn.net/weixin_46039719/article/details/124766317

延伸 · 阅读

精彩推荐
  • C/C++解析C++类内存分布

    解析C++类内存分布

    本篇文章介绍了C++类内存分布结构,我们来看看编译器是怎么处理类成员内存分布的,特别是在继承、虚函数存在的情况下...

    lsgxeva9762021-11-14
  • C/C++opencv3/C++图像滤波实现方式

    opencv3/C++图像滤波实现方式

    今天小编就为大家分享一篇opencv3/C++图像滤波实现方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    阿卡蒂奥11202021-08-08
  • C/C++深入探讨:宏、内联函数与普通函数的区别

    深入探讨:宏、内联函数与普通函数的区别

    本篇文章是对宏、内联函数与普通函数的区别进行了详细的分析介绍,需要的朋友参考下...

    C语言教程网1742020-12-10
  • C/C++OpenCV实现图像连通域

    OpenCV实现图像连通域

    这篇文章主要为大家详细介绍了OpenCV实现图像连通域,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...

    我有一個夢想7522021-11-17
  • C/C++C++实现动态顺序表(vector)

    C++实现动态顺序表(vector)

    这篇文章主要为大家详细介绍了C++实现动态顺序表,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...

    get_it_started11162021-09-07
  • C/C++C/C++ Qt Dialog 对话框组件应用技巧

    C/C++ Qt Dialog 对话框组件应用技巧

    这篇文章主要介绍了C/C++ Qt Dialog 对话框组件应用,这里我将总结本人在开发过程中常用到的标准对话框的使用技巧,对C++ 对话框组件相关知识感兴趣的朋友...

    lyshark12232022-03-03
  • C/C++C语言逻辑运算符知识整理

    C语言逻辑运算符知识整理

    本文主要介绍C语言逻辑运算符,这里详细讲解了C语言中的逻辑运算符,并提供了实例代码以便大家学习参考,希望能帮助有需要的小伙伴...

    C语言教程网4032021-04-12
  • C/C++利用C语言实现三子棋(井字棋)小游戏

    利用C语言实现三子棋(井字棋)小游戏

    这篇文章主要为大家详细介绍了利用C语言实现三子棋小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...

    IT技术博主-方兴未艾10802021-12-09