脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|shell|

服务器之家 - 脚本之家 - Python - Python可视化函数plt.scatter

Python可视化函数plt.scatter

2023-10-12 14:53无水先生 Python

关于matplotlib的scatter函数有许多活动参数,如果不专门注解,是无法掌握精髓的,本文专门针对scatter的参数和调用说起,并配有若干案例。

一、说明

       关于matplotlib的scatter函数有许多活动参数,如果不专门注解,是无法掌握精髓的,本文专门针对scatter的参数和调用说起,并配有若干案例。

二、函数和参数详解

2.1 scatter函数原型

matplotlib.pyplot.scatter(xys=Nonec=Nonemarker=Nonecmap=Nonenorm=Nonevmin=Nonevmax=Nonealpha=Nonelinewidths=None*edgecolors=Noneplotnonfinite=Falsedata=None**kwargs)

2.2 参数详解

属性 参数 意义
坐标 x,y 输入点列的数组,长度都是size
点大小 s 点的直径数组,默认直径20,长度最大size
点颜色 c 点的颜色,默认蓝色 'b',也可以是个 RGB 或 RGBA 二维行数组。
点形状 marker 点的样式,默认小圆圈 'o'。
调色板 cmap

Colormap,默认 None,标量或者是一个 colormap 的名字,只有 c 是一个浮点数数组时才使用。如果没有申明就是 image.cmap。

亮度(1) norm Normalize,默认 None,数据亮度在 0-1 之间,只有 c 是一个浮点数的数组的时才使用。
亮度(2) vmin,vmax 亮度设置,在 norm 参数存在时会忽略。
透明度 alpha 透明度设置,0-1 之间,默认 None,即不透明
线 linewidths  标记点的长度
颜色

edgecolors

颜色或颜色序列,默认为 'face',可选值有 'face', 'none', None。
 

plotnonfinite

布尔值,设置是否使用非限定的 c ( inf, -inf 或 nan) 绘制点。
 

**kwargs 

其他参数。

2.3 其中散点的形状参数marker如下:

Python可视化函数plt.scatter

Python可视化函数plt.scatter

2.4 其中颜色参数c如下:

Python可视化函数plt.scatter

三、画图示例

3.1 关于坐标x,y和s,c

import numpy as np
import matplotlib.pyplot as plt

# Fixing random state for reproducibility
np.random.seed(19680801)


N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)          # 颜色可以随机
area = (30 * np.random.rand(N))**2  # 点的宽度30,半径15

plt.scatter(x, y, s=area, c=colors, alpha=0.5)  
plt.show()

Python可视化函数plt.scatter

        注意:以上核心语句是:

plt.scatter(x, y, s=area, c=colors, alpha=0.5, marker=",")

        其中:x,y,s,c维度一样就能成。

3.2 多元高斯的情况

​
import numpy as np
import matplotlib.pyplot as plt


fig=plt.figure(figsize=(8,6))
#Generating a Gaussion dataset:
#creating random vectors from the multivariate normal distribution
#given mean and covariance
mu_vec1=np.array([0,0])
cov_mat1=np.array([[1,0],[0,1]])
X=np.random.multivariate_normal(mu_vec1,cov_mat1,500)
R=X**2
R_sum=R.sum(axis=1)
plt.scatter(X[:,0],X[:,1],color='green',marker='o', =32.*R_sum,edgecolor='black',alpha=0.5)

plt.show()

​

Python可视化函数plt.scatter

3.3  绘制例子

from matplotlib import pyplot as plt
import numpy as np
# Generating a Gaussion dTset:
#Creating random vectors from the multivaritate normal distribution
#givem mean and covariance

mu_vecl = np.array([0, 0])
cov_matl = np.array([[2,0],[0,2]])

x1_samples = np.random.multivariate_normal(mu_vecl, cov_matl,100)
x2_samples = np.random.multivariate_normal(mu_vecl+0.2, cov_matl +0.2, 100)
x3_samples = np.random.multivariate_normal(mu_vecl+0.4, cov_matl +0.4, 100)

plt.figure(figsize = (8, 6))

plt.scatter(x1_samples[:,0], x1_samples[:, 1], marker='x',
           color = 'blue', alpha=0.7, label = 'x1 samples')
plt.scatter(x2_samples[:,0], x1_samples[:,1], marker='o',
           color ='green', alpha=0.7, label = 'x2 samples')
plt.scatter(x3_samples[:,0], x1_samples[:,1], marker='^',
           color ='red', alpha=0.7, label = 'x3 samples')
plt.title('Basic scatter plot')
plt.ylabel('variable X')
plt.xlabel('Variable Y')
plt.legend(loc = 'upper right')

plt.show()


    import matplotlib.pyplot as plt
    
    fig,ax = plt.subplots()
    
    ax.plot([0],[0], marker="o",  markersize=10)
    ax.plot([0.07,0.93],[0,0],    linewidth=10)
    ax.scatter([1],[0],           s=100)
    
    ax.plot([0],[1], marker="o",  markersize=22)
    ax.plot([0.14,0.86],[1,1],    linewidth=22)
    ax.scatter([1],[1],           s=22**2)
    
    plt.show()



![image.png](http://upload-images.jianshu.io/upload_images/8730384-8d27a5015b37ee97.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

    import matplotlib.pyplot as plt
    
    for dpi in [72,100,144]:
    
        fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
        ax.set_title("fig.dpi={}".format(dpi))
    
        ax.set_ylim(-3,3)
        ax.set_xlim(-2,2)
    
        ax.scatter([0],[1], s=10**2, 
                   marker="s", linewidth=0, label="100 points^2")
        ax.scatter([1],[1], s=(10*72./fig.dpi)**2, 
                   marker="s", linewidth=0, label="100 pixels^2")
    
        ax.legend(loc=8,framealpha=1, fontsize=8)
    
        fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")
    
    plt.show() 

Python可视化函数plt.scatter

3.4 绘图例3

import matplotlib.pyplot as plt

for dpi in [72,100,144]:

    fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
    ax.set_title("fig.dpi={}".format(dpi))

    ax.set_ylim(-3,3)
    ax.set_xlim(-2,2)

    ax.scatter([0],[1], s=10**2, 
               marker="s", linewidth=0, label="100 points^2")
    ax.scatter([1],[1], s=(10*72./fig.dpi)**2, 
               marker="s", linewidth=0, label="100 pixels^2")

    ax.legend(loc=8,framealpha=1, fontsize=8)

    fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")

plt.show() 

Python可视化函数plt.scatter

3.5  同心绘制

plt.scatter(2, 1, s=4000, c='r')
plt.scatter(2, 1, s=1000 ,c='b')
plt.scatter(2, 1, s=10, c='g')

Python可视化函数plt.scatter

3.6 有标签绘制

import matplotlib.pyplot as plt

x_coords = [0.13, 0.22, 0.39, 0.59, 0.68, 0.74,0.93]
y_coords = [0.75, 0.34, 0.44, 0.52, 0.80, 0.25,0.55]

fig = plt.figure(figsize = (8,5))

plt.scatter(x_coords, y_coords, marker = 's', s = 50)
for x, y in zip(x_coords, y_coords):
    plt.annotate('(%s,%s)'%(x,y), xy=(x,y),xytext = (0, -10), textcoords = 'offset points',ha = 'center', va = 'top')
plt.xlim([0,1])
plt.ylim([0,1])
plt.show()

Python可视化函数plt.scatter

3.7 直线划分

# 2-category classfication with random 2D-sample data
# from a multivariate normal distribution

import numpy as np
from matplotlib import pyplot as plt

def decision_boundary(x_1):
    """Calculates the x_2 value for plotting the decision boundary."""
#    return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16))
    return -x_1 + 1

# Generating a gaussion dataset:
# creating random vectors from the multivariate normal distribution
# given mean and covariance

mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100)
mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR

mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector

# Main scatter plot and plot annotation

f, ax = plt.subplots(figsize = (7, 7))
ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40)
ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40)
plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right')
plt.title('Densities of 2 classes with 25 bivariate random patterns each')
plt.ylabel('x2')
plt.xlabel('x1')
ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I'
plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left')

#Adding decision boundary to plot

x_1 = np.arange(-5, 5, 0.1)
bound = decision_boundary(x_1)
plt.plot(x_1, bound, 'r--', lw = 3)

x_vec = np.linspace(*ax.get_xlim())
x_1 = np.arange(0, 100, 0.05)

plt.show()

Python可视化函数plt.scatter

3.8 曲线划分

# 2-category classfication with random 2D-sample data
# from a multivariate normal distribution

import numpy as np
from matplotlib import pyplot as plt

def decision_boundary(x_1):
    """Calculates the x_2 value for plotting the decision boundary."""
    return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16))

# Generating a gaussion dataset:
# creating random vectors from the multivariate normal distribution
# given mean and covariance

mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100)
mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR

mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector

# Main scatter plot and plot annotation

f, ax = plt.subplots(figsize = (7, 7))
ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40)
ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40)
plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right')
plt.title('Densities of 2 classes with 25 bivariate random patterns each')
plt.ylabel('x2')
plt.xlabel('x1')
ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I'
plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left')

#Adding decision boundary to plot

x_1 = np.arange(-5, 5, 0.1)
bound = decision_boundary(x_1)
plt.plot(x_1, bound, 'r--', lw = 3)

x_vec = np.linspace(*ax.get_xlim())
x_1 = np.arange(0, 100, 0.05)

plt.show()

Python可视化函数plt.scatter

 

 

到此这篇关于Python可视化函数plt.scatter的文章就介绍到这了,更多相关内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文地址:https://blog.csdn.net/gongdiwudu/article/details/129947219

延伸 · 阅读

精彩推荐
  • PythonUbuntu16.04/树莓派Python3+opencv配置教程(分享)

    Ubuntu16.04/树莓派Python3+opencv配置教程(分享)

    下面小编就为大家分享一篇Ubuntu16.04/树莓派Python3+opencv配置教程。具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    你微笑很美9612021-01-26
  • PythonPython随机生成身份证号码及校验功能

    Python随机生成身份证号码及校验功能

    这篇文章主要介绍了Python随机生成身份证号码及校验功能,文中给大家提到了校验码计算方法,需要的朋友可以参考下...

    风静花犹落14202021-04-25
  • PythonPython中的套接字编程是什么?

    Python中的套接字编程是什么?

    不可否认,互联网已成为“存在之魂”,其活动以“连接”或“网络”为特征.使用套接字的最关键的基础之一,使这些网络成为可能.本文涵盖了有关使用Pyth...

    华为云6862021-12-06
  • PythonPython中pygame的mouse鼠标事件用法实例

    Python中pygame的mouse鼠标事件用法实例

    这篇文章主要介绍了Python中pygame的mouse鼠标事件用法,以完整实例形式详细分析了pygame响应鼠标事件的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考...

    Hongten13202020-08-02
  • PythonPython两台电脑实现TCP通信的方法示例

    Python两台电脑实现TCP通信的方法示例

    这篇文章主要介绍了Python两台电脑实现TCP通信的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋...

    AD稳稳7692021-06-23
  • Pythonpython基础while循环及if判断的实例讲解

    python基础while循环及if判断的实例讲解

    下面小编就为大家带来一篇python基础while循环及if判断的实例讲解。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧...

    haimeng6962020-12-04
  • Python从请求到响应过程中django都做了哪些处理

    从请求到响应过程中django都做了哪些处理

    这篇文章主要给大家介绍了关于从请求到响应过程中django都做了哪些处理的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定...

    创宇前端11072021-03-25
  • PythonPython内置函数Type()函数一个有趣的用法

    Python内置函数Type()函数一个有趣的用法

    这篇文章主要介绍了Python内置函数Type()函数一个有趣的用法,本文讲解的是个人发现在的一个有趣的用法,注意这种写法会导致代码很难读,需要的朋友可以参...

    junjie5472019-11-20