服务器之家:专注于VPS、云服务器配置技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C语言的动态内存分配及动态内存分配函数详解

C语言的动态内存分配及动态内存分配函数详解

2022-10-26 13:50Green_756 C/C++

这篇文章主要为大家详细介绍了C语言的动态内存分配及动态内存分配函数,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助

malloc

void *malloc( size_t size );

Tips:这里的size代表的是字节的大小

malloc的使用:

//malloc的使用
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
 
int main()
{
    int* str = 0;
    int* p = 0;
    str = (int*)malloc(10*sizeof(int));//开辟十个整型空间
    if (NULL == str)
    {
        printf("%s
", strerror(errno));//若开辟失败
        //使用报错函数strerror(errno)    要引用头文件<string.h>
    }
    else
    {
        p = str;
    }
    free(p);
    p = NULL;
    return 0;
}

 

free

释放申请的内存空间,例:free(p)

当释放后,虽然p中的值还在,不变,但p就为野指针了。所以建议释放后将p设置为空指针。(p=NULL)

 

calloc

calloc:开辟并且初始化为0的数组。

void* calloc(size_t num,size_t size)

  • num——元素个数
  • size——元素大小

成功的话返回地址,失败返回空指针NULL

 

calloc的使用:

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
 
int main()
{
    int* str = 0;
    int* p = 0;
    str = (int*)calloc(10,sizeof(int));
    if (NULL == str)
    {
        printf("%s
", strerror(errno));
    }
    else
    {
        p = str;
    }
    free(p);
    p = NULL;
    return 0;
}

 

realloc

可开辟空间,也可以调整空间。

void *realloc( void *memblock, size_t size );

  • memblock——要开辟空间的指针类型
  • size——要开辟的字节大小

p=(int)realloc(p,80)*——这样子写也是有风险的。

风险:为了避免可能会把增容的后面的已有的内存空间给覆盖掉,所以会在另一块大小足够的地方开辟空间,然后把原来的数据转移到新的空间上。并且把原来的内存空间给释放掉。

若realloc调整空间失败,则返回NULL。原来的数据也没有了。

 

realloc的使用改进:

int* ptr=(int*)realloc(p,80);
if(NULL!=ptr)
{
    p=ptr;//这样子能够保证确定了不为空指针后才正式传给p,相当于没有了会失去原来数据的风险
}

 

realloc的另一种用法:

int* p=(int*)realloc(NULL,40);

这种写法相当于malloc

 

常见的动态内存错误

 

对空指针的解引用操作

将malloc函数开辟一个贼大的空间,INT_MAX,此时会有一个空指针,进行判断,如果为空指针就立马结束这个程序了。不要出问题(ps:这里的INT_MAX的使用要引用头文件limits.h)

所以要判断是不是空指针,是的话就中断,例:

//错误写法
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
 
int main()
{
    int i = 0;
    int* p = (int*)malloc(INT_MAX);
    for (i = 0; i < 5; i++)
    {
        *(p + i) = i;
    }
    return 0;
}
 
//正确写法:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
 
int main()
{
    int i = 0;
    int* p = (int*)malloc(INT_MAX);
    if (p == NULL)
    {
        printf("%s
", strerror(errno));//这里是将错误报出来
        return 0;//发现是空指针,提前结束
    }
    for (i = 0; i < 5; i++)
    {
        *(p + i) = i;
    }
    return 0;
}
 

 

对动态开辟空间的越界访问

不可以不申请即使用动态内存空间,会报错的。

Tips:没有开辟的空间是不能使用的

 

对非动态开辟内存使用free释放

int main()
{
    int p=0;
    int* a=&p;
    free(a);//这个样子是错误的
    return 0;
}

 

使用free释放一块动态开辟内存的一部分

开辟动态空间的时候,一定要把起始位置给用变量存好,否则到时会无法释放内存。

//使用free释放一块动态开辟内存的一部分
 
//正确写法:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
 
int main()
{
    int i = 0;
    int* p = (int*)malloc(10 * sizeof(int));
    //正确写法:
    for (i = 0; i < 5; i++)
    {
        *(p + i) = i;
    }
    free(p);
    p=NULL;
    return 0;
}
    
    
    
    
//错误写法:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
 
int main()
{
    int i = 0;
    int* p = (int*)malloc(10 * sizeof(int));
    //错误写法:
    for (i = 0; i < 5; i++)
    {
        *p = i;
        p++;//这里会改变p的原始位置,使得无法指向一开始开辟动态内存空间的位置,最终报错
    }
    free(p);
    p = NULL;
    return 0;
}

 

对同一块动态内存多次释放

一块空间释放后不可再释放,但释放完后p置为空指针再次释放时不会报错。

Q:free空指针时会有问题么?

A:不会,因为一块空间释放后就不能再次释放了,所以每次free完后记得置为空指针。

 

动态开辟内存忘记释放(内存泄露)

即使在函数中开辟内存空间也要记得释放。因为出了函数在外面想释放也无法释放。

但如果返回首元素的地址,free了也行,就是无论怎么样,一定要释放。

在任何地方开辟的内存空间都最好要释放。

 

找出下面问题:

 

T1:

void GetMemory(char* p)
{
    p=(char*)malloc(100);
}
void Test(void)
{
    char* str=NULL;
    GetMemory(str);
    strcpy(str,"hello world");
    printf(str);
}
 
int main()
{
    Test();
    return 0;
}

出现的问题:

在这里str是空指针,而p只是新建的一个形参,运行完函数后无法返回p不存在了,但是内存空间还未被释放,而这个空间的地址此时是没有人能够知道的。也并不能将str里面的NULL改变,所以在strcpy时会出错,因为str此时为NULL指针,会造成非法访问内存,程序会崩溃。

而且在使用过程中只进行了动态内存的开辟,没有进行动态内存的释放,可能会造成动态内存泄露。

改进方法:

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
 
char* GetMemory(char* p)
{
    p = (char*)malloc(100);
    return p;
}
void Test(void)
{
    char* str = NULL;
    str = GetMemory(str);
    strcpy(str, "hello world");
    printf(str);
    free(str);
    str = NULL;
}
 
int main()
{
    Test();
    return 0;
}

函数的栈帧与创建:p尽管销毁,因为会先把p里面的值放入到寄存器中,寄存器里面不会销毁,之后再从寄存器位置传进去str。

C语言的动态内存分配及动态内存分配函数详解

 

T2:

C语言的动态内存分配及动态内存分配函数详解

出现的问题:

返回栈空间地址问题:

这里虽然能把p的地址传回去,但是在函数运行完后在函数里面创建的数据会被销毁,也就是说虽然能通过指针找到原来的内存所指向的地方,但是数据都以被销毁。

注意!!!

C语言的动态内存分配及动态内存分配函数详解

这样是可以的,因为返回的是栈空间的变量而不是栈空间的地址。

总结:

在创造函数如果返回地址而不是返回值,在用的时候可能依然是在函数内的值,但也有很大可能不是,可能不是的原因是有关函数栈帧方面,如果在引用地址前再写上一段例如:"printf("23333 ");",可能会导致覆盖掉原来地址上的数据,所以无法通过传址来输出真正的值,因为会被覆盖掉。

 

T3:

C语言的动态内存分配及动态内存分配函数详解

出现的问题:

除了free没有太大毛病了。这里能够打印出hello。

 

T4:

C语言的动态内存分配及动态内存分配函数详解

出现的问题:

这里的free其实是把动态内存空间还给系统了,但是str的话没有定为空指针,仍然存着当初指向开辟的内存空间的地址,那么就还可以通过str找到当初开辟的内存空间,只是这个时候因为释放(free)str了,所以此时没有访问空间的权限,也就无法将world拷贝到str所指向的空间。

正确改法:

所以,在每次free后面都要记得设置为空指针。

 

柔性数组

在c99中,结构体中的最后一个元素是允许未知大小的数组,这就叫做【柔性数组】成员。

 

柔性数组的定义

//写法一:
struct s1
{
    int n;
    int arr[0];//大小是未指定
}
//写法二:
struct s2
{
    int n;
    int arr[];//大小是未指定
}
//总会有一种写法编译器不报错
 

Tips:在计算包含柔性数组大小的时候,柔性数组是不计算在大小里面的。(可以写一个来试一下)

 

柔性数组的特点:

  • 柔性数组前至少需要一个其他成员
  • sizeof返回的这种结构大小不包括柔性数组的内存
  • 包含柔性数组成员的结构用malloc()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。

柔性数组的开辟(自己先写)

包含柔性数组的结构体不可以直接创建,而是要有malloc来开辟空间。

//写柔性数组的方法一:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
 
struct p
{
    int i;
    int arr[];
};
 
int main()
{
    struct p* cmp = (struct p*)malloc(sizeof(struct p) + 80);//这里是开辟了一共84个字节空间,分给arr数组80个字节空间
    free(p);
    p = NULL;
    return 0;
}
 
 
//写柔性数组的方法二:(先开辟整个的,再开辟数组的)
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
 
struct p
{
    int i;
    int* arr;//这样才能在方法二中使用
};
 
int main()
{
    struct p* cmp = (struct p*)malloc(sizeof(struct p));
    cmp->i = 10;
    cmp->arr = (int*)malloc(80);//从数组开始,再次开辟80个字节空间
    free(p);
    p = NULL;
    return 0;
}
 

第二种方案(劣势):

1.开辟和释放的次数多,容易出错

2.频繁多次开辟内存,会有内存碎片出现,可能会导致内存的使用效率不高

第一种方案优势:

1.方便释放

2.减少内存碎片的出现

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注服务器之家的更多内容!  

原文地址:https://blog.csdn.net/Green_756/article/details/123595906

延伸 · 阅读

精彩推荐
  • C/C++C++编辑距离(动态规划)

    C++编辑距离(动态规划)

    这篇文章主要介绍了C++编辑距离(动态规划),编辑距离是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数,限免详细内容,需要的小伙伴...

    sasorit6542022-08-16
  • C/C++C/C++ memset方法的误区

    C/C++ memset方法的误区

    memset 作为对内存初始化的函数,还是有不少坑和误区的,今天就来对这个函数作一个总结。避免后期使用不当踩入坑,需要的朋友可以参考下...

    李春港6392021-11-01
  • C/C++嵌入式C语言查表法在项目中的应用

    嵌入式C语言查表法在项目中的应用

    今天小编就为大家分享一篇关于嵌入式C语言查表法在项目中的应用,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随...

    Engineer-Bruce_Yang4022021-07-14
  • C/C++全面了解#pragma once与 #ifndef的区别

    全面了解#pragma once与 #ifndef的区别

    下面小编就为大家带来一篇全面了解#pragma once与 #ifndef的区别。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧...

    junjie12312021-04-15
  • C/C++OnSize、OnSizing和OnGetMinMaxInfo区别分析

    OnSize、OnSizing和OnGetMinMaxInfo区别分析

    这篇文章主要介绍了OnSize、OnSizing和OnGetMinMaxInfo区别分析,需要的朋友可以参考下...

    C语言程序设计9832021-02-21
  • C/C++直观理解C语言中指向一位数组与二维数组的指针

    直观理解C语言中指向一位数组与二维数组的指针

    这篇文章主要介绍了直观理解C语言中指向一位数组与二维数组的指针,数组指针是C语言入门学习过程中的重点和难点,需要的朋友可以参考下...

    永远的晴天4792021-04-01
  • C/C++C++基于控制台实现的贪吃蛇小游戏

    C++基于控制台实现的贪吃蛇小游戏

    这篇文章主要介绍了C++基于控制台实现的贪吃蛇小游戏,实例分析了贪吃蛇游戏的原理与C++实现技巧,是非常经典的游戏算法,需要的朋友可以参考下...

    司青11082021-02-24
  • C/C++详解C++ sort函数的cmp参数

    详解C++ sort函数的cmp参数

    这篇文章主要介绍了C++ sort函数的cmp参数,以升降排序个结构体的排序展开的话题,感兴趣的小伙伴可以参考下面文章内容...

    异想之旅8742021-12-31