服务器之家:专注于VPS、云服务器配置技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - Java教程 - Netty分布式pipeline管道Handler的添加代码跟踪解析

Netty分布式pipeline管道Handler的添加代码跟踪解析

2022-10-25 15:22向南是个万人迷 Java教程

这篇文章主要介绍了Netty分布式pipeline管道Handler的添加代码跟踪解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

前文传送门:Netty分布式pipeline管道创建

添加handler

我们以用户代码为例进行剖析:

?
1
2
3
4
5
6
7
.childHandler(new ChannelInitializer<SocketChannel>() {
    protected void initChannel(SocketChannel ch) throws Exception {
        ch.pipeline().addLast(new DelimiterBasedFrameDecoder(Integer.MAX_VALUE, Delimiters.lineDelimiter()[0]));
        ch.pipeline().addLast(new StringEncoder());
        ch.pipeline().addLast(new SimpleHandler());
    }
});

用过netty的小伙伴们肯定对这段代码不会陌生, 通过addLast, 可以添加编解码器和我们自定义的handler, 某一个事件完成之后可以自动调用我们handler预先定义的方法, 具体添加和调用是怎么个执行逻辑, 在我们之后的内容会全部学习到, 以后再使用这类的功能会得心应手

在这里, 我们主要剖析 ch.pipeline().addLast(new SimpleHandler()) 这部分代码的addLast()方法

首先通过channel拿到当前的pipline, 这个上一小节进行剖析过相信不会陌生

拿到pipeline之后再为其添加handler, 因为channel初始化默认创建的是DefualtChannelPipeline

我们跟到其addLast()方法中

?
1
2
3
public final ChannelPipeline addLast(ChannelHandler... handlers) {
    return addLast(null, handlers);
}

首先看到这里的参数其实是一个可变对象, 也就是可以传递多个handler, 这里我们只传递了一个

我们继续跟addLast:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
public final ChannelPipeline addLast(EventExecutorGroup executor, ChannelHandler... handlers) {
    if (handlers == null) {
        throw new NullPointerException("handlers");
    }
    //传多个参数的时候通过for循环添加
    for (ChannelHandler h: handlers) {
        if (h == null) {
            break;
        }
        addLast(executor, null, h);
    }
    return this;
}

这里如果传入多个handler则会循环添加, 我们通常只添加一个

再继续跟到addLast()方法中去

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {
    final AbstractChannelHandlerContext newCtx;
    synchronized (this) {
        //判断handler是否被重复添加(1)
        checkMultiplicity(handler);
        //创建一个HandlerContext并添加到列表(2)
        newCtx = newContext(group, filterName(name, handler), handler);
 
        //添加HandlerContext(3)
        addLast0(newCtx);
 
        //是否已注册
        if (!registered) {
            newCtx.setAddPending();
            callHandlerCallbackLater(newCtx, true);
            return this;
        }
 
        EventExecutor executor = newCtx.executor();
        if (!executor.inEventLoop()) {
            newCtx.setAddPending();
            //回调用户事件
            executor.execute(new Runnable() {
                @Override
                public void run() {
                    callHandlerAdded0(newCtx);
                }
            });
            return this;
        }
    }
    //回调添加事件(4)
    callHandlerAdded0(newCtx);
    return this;
}

这部分代码比较长, 我们拆解为4个步骤:

1.重复添加验证

2.创建一个HandlerContext并添加到列表

3. 添加context

4. 回调添加事件

首先我们看第一步, 重复添加验证

我们跟到checkMultiplicity(handler)中

?
1
2
3
4
5
6
7
8
9
10
11
12
private static void checkMultiplicity(ChannelHandler handler) {
    if (handler instanceof ChannelHandlerAdapter) {
        ChannelHandlerAdapter h = (ChannelHandlerAdapter) handler;
        if (!h.isSharable() && h.added) {
            throw new ChannelPipelineException(
                    h.getClass().getName() +
                    " is not a @Sharable handler, so can't be added or removed multiple times.");
        }
        //满足条件设置为true, 代表已添加
        h.added = true;
    }
}

首先判断是不是ChannelHandlerAdapter类型, 因为我们自定义的handler通常会直接或者间接的继承该接口, 所以这里为true

拿到handler之后转换成ChannelHandlerAdapter类型, 然后进行条件判断

 if (!h.isSharable() && h.added) 代表如果不是共享的handler, 并且是未添加状态, 则抛出异常:

我们可以跟到isSharable()方法中去:

?
1
2
3
4
5
6
7
8
9
10
11
public boolean isSharable() {
    Class<?> clazz = getClass();
    Map<Class<?>, Boolean> cache = InternalThreadLocalMap.get().handlerSharableCache();
    Boolean sharable = cache.get(clazz);
    if (sharable == null) {
        //如果这个类注解了Sharable.class, 说明这个类会被多个channel共享
        sharable = clazz.isAnnotationPresent(Sharable.class);
        cache.put(clazz, sharable);
    }
    return sharable;
}

首先拿到当前handler的class对象

然后再从netty自定义的一个ThreadLocalMap对象中获取一个盛放handler的class对象的map, 并获取其value

如果value值为空, 则会判断是否被Sharable注解, 并将自身handler的class对象和判断结果存入map对象中, 最后返回判断结果

这说明了被Sharable注解的handler是一个共享handler

从这个逻辑我们可以判断, 共享对象是可以重复添加的

我们回到checkMultiplicity(handler)方法中:

如果是共享对象或者没有被添加, 则将ChannelHandlerAdapter的added设置为true, 代表已添加

剖析完了重复添加验证, 回到addLast方法中, 我们看第二步, 创建一个HandlerContext并添加到列表:

?
1
newCtx = newContext(group, filterName(name, handler), handler);

首先看filterName(name, handler)方法, 这个方法是判断添加handler的name是否重复

跟到filterName方法中

?
1
2
3
4
5
6
7
8
9
private String filterName(String name, ChannelHandler handler) {
    if (name == null) {
        //没有名字创建默认名字
        return generateName(handler);
    }
    //检查名字是否重复
    checkDuplicateName(name);
    return name;
}

因为我们添加handler时候, 不一定会会给handler命名, 所以这一步name有可能是null, 如果是null, 则创建一个默认的名字, 这里创建名字的方法我们就不往里跟了, 有兴趣的同学可以自己跟进去看

然后再检查名字是否重复

我们跟到checkDuplicateName(name)这个方法中:

?
1
2
3
4
5
6
private void checkDuplicateName(String name) {
    //不为空
    if (context0(name) != null) {
        throw new IllegalArgumentException("Duplicate handler name: " + name);
    }
}

这里有个context0(name)方法, 我们跟进去:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
private AbstractChannelHandlerContext context0(String name) {
    //遍历pipeline
    AbstractChannelHandlerContext context = head.next;
    while (context != tail) {
        //发现name相同, 说明存在handler
        if (context.name().equals(name)) {
            //返回
            return context;
        }
        context = context.next;
    }
    return null;
}

这里做的操作非常简单, 就是将pipeline中, 从head节点往下遍历HandlerContext, 一直遍历到tail, 如果发现名字相同则会认为重复并返回HandlerContext对象

我们回到addLast()方法中并继续看添加创建相关的逻辑:

newCtx = newContext(group, filterName(name, handler), handler)

filterName(name, handler)这步如果并没有重复则会返回handler的name

我们继续跟到newContext(group, filterName(name, handler), handler)方法中:

?
1
2
3
private AbstractChannelHandlerContext newContext(EventExecutorGroup group, String name, ChannelHandler handler) {
    return new DefaultChannelHandlerContext(this, childExecutor(group), name, handler);
}

这里我们看到创建了一个DefaultChannelHandlerContext对象, 构造方法的参数中, 第一个this代表当前的pipeline对象, group为null, 所以childExecutor(group)也会返回null, name为handler的名字, handler为新添加的handler对象

我们继续跟到DefaultChannelHandlerContext的构造方法中:

?
1
2
3
4
5
6
7
8
DefaultChannelHandlerContext(
        DefaultChannelPipeline pipeline, EventExecutor executor, String name, ChannelHandler handler) {
    super(pipeline, executor, name, isInbound(handler), isOutbound(handler));
    if (handler == null) {
        throw new NullPointerException("handler");
    }
    this.handler = handler;
}

我们看到首先调用了父类的构造方法, 之后将handler赋值为自身handler的成员变量, HandlerConext和handler关系在此也展现了出来, 是一种组合关系

我们首先看父类的构造方法, 有这么两个参数:isInbound(handler), isOutbound(handler), 这两个参数意思是判断需要添加的handler是inboundHandler还是outBoundHandler

跟到isInbound(handler)方法中

?
1
2
3
private static boolean isInbound(ChannelHandler handler) {
    return handler instanceof ChannelInboundHandler;
}

这里通过是否实现ChannelInboundHandler接口来判断是否为inboundhandler

同样我们看isOutbound(handler)方法:

?
1
2
3
private static boolean isOutbound(ChannelHandler handler) {
    return handler instanceof ChannelOutboundHandler;
}

通过判断是否实现ChannelOutboundHandler接口判断是否为outboundhandler

在跟到其父类AbstractChannelHandlerContext的构造方法中:

?
1
2
3
4
5
6
7
8
9
AbstractChannelHandlerContext(DefaultChannelPipeline pipeline, EventExecutor executor, String name,
                              boolean inbound, boolean outbound) {
    this.name = ObjectUtil.checkNotNull(name, "name");
    this.pipeline = pipeline;
    this.executor = executor;
    this.inbound = inbound;
    this.outbound = outbound;
    ordered = executor == null || executor instanceof OrderedEventExecutor;
}

一切都不陌生了, 因为我们tail节点和head节点创建的时候同样走到了这里

这里初始化了name, pipeline, 以及标识添加的handler是inboundhanlder还是outboundhandler

我们回到最初的addLast()方法中

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {
    final AbstractChannelHandlerContext newCtx;
    synchronized (this) {
        //判断handler是否被重复添加(1)
        checkMultiplicity(handler);
        //创建一个HandlerContext并添加到列表(2)
        newCtx = newContext(group, filterName(name, handler), handler);
        //添加HandlerContext(3)
        addLast0(newCtx);
        //是否已注册
        if (!registered) {
            newCtx.setAddPending();
            callHandlerCallbackLater(newCtx, true);
            return this;
        }
        EventExecutor executor = newCtx.executor();
        if (!executor.inEventLoop()) {
            newCtx.setAddPending();
            //回调用户事件
            executor.execute(new Runnable() {
                @Override
                public void run() {
                    callHandlerAdded0(newCtx);
                }
            });
            return this;
        }
    }
    //回调添加事件(4)
    callHandlerAdded0(newCtx);
    return this;
}

我们跟完了创建HandlerContext的相关逻辑, 我们继续跟第三步, 添加HandlerContext

我们跟进addLast0(newCtx)中

?
1
2
3
4
5
6
7
8
9
10
11
12
private void addLast0(AbstractChannelHandlerContext newCtx) {
    //拿到tail节点的前置节点
    AbstractChannelHandlerContext prev = tail.prev;
    //当前节点的前置节点赋值为tail节点的前置节点
    newCtx.prev = prev;
    //当前节点的下一个节点赋值为tail节点
    newCtx.next = tail;
    //tail前置节点的下一个节点赋值为当前节点
    prev.next = newCtx;
    //tail节点的前一个节点赋值为当前节点
    tail.prev = newCtx;
}

这一部分也非常简单, 做了一个指针的指向操作, 将新添加的handlerConext放在tail节点之前, 之前tail节点的上一个节点之后, 熟悉双向链表的同学对此逻辑应该不会陌生, 如果是第一次添加handler, 那么添加后的结构入下图所示:

Netty分布式pipeline管道Handler的添加代码跟踪解析

添加完handler之后, 这里会判断当前channel是否已经注册, 这部分逻辑我们之后再进行剖析, 我们继续往下走

之后会判断当前线程线程是否为eventLoop线程, 如果不是eventLoop线程, 就将添加回调事件封装成task交给eventLoop线程执行, 否则, 直接执行添加回调事件callHandlerAdded0(newCtx)

跟进callHandlerAdded0(newCtx)

?
1
2
3
4
5
6
7
8
private void callHandlerAdded0(final AbstractChannelHandlerContext ctx) {
    try {
        ctx.handler().handlerAdded(ctx);
        ctx.setAddComplete();
    } catch (Throwable t) {
        //忽略代码
    }
}

我们重点关注这句

?
1
ctx.handler().handlerAdded(ctx);

其中ctx是我们新创建的HandlerContext, 通过handler()方法拿到绑定的handler, 也就是新添加的handler, 然后执行handlerAdded(ctx)方法, 如果我们没有重写这个方法, 则会执行父类的该方法

在ChannelHandlerAdapter类中定义了该方法的实现:

?
1
2
3
@Override
public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
}

我们看到没做任何操作, 也就是如果我们没有重写该方法时, 如果添加handler之后将不会做任何操作, 这里如果我们需要做一些业务逻辑, 可以通过重写该方法进行实现

以上就是添加handler的有关的业务逻辑,更多关于Netty分布式pipeline管道添加Handler的资料请关注服务器之家其它相关文章!

原文链接:https://www.cnblogs.com/xiangnan6122/p/10204285.html

延伸 · 阅读

精彩推荐