服务器之家:专注于VPS、云服务器配置技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C/C++ - C++ OpenCV实战之图像全景拼接

C++ OpenCV实战之图像全景拼接

2022-08-08 10:41Zero___Chen C/C++

本文主要介绍了如何使用OpenCV C++ 进行图像全景拼接,文中的示例代码讲解详细,对我们学习OpenCV有一定的帮助,感兴趣的可以了解一下

前言

本文将使用OpenCV C++ 进行图像全景拼接。目前使用OpenCV对两幅图像进行拼接大致可以分为两类。

一、使用OpenCV内置API Stitcher 进行拼接。

二、使用特征检测算法匹配两幅图中相似的点、计算变换矩阵、最后对其进行透视变换就可以了。

 

一、OpenCV Stitcher

imageA

C++ OpenCV实战之图像全景拼接

imageB

C++ OpenCV实战之图像全景拼接

原图如图所示。本案例的需求是将上述两幅图片拼接成一幅图像。首先使用OpenCV提供的Stitcher进行拼接。关于Stitcher的具体原理请大家自行查找相关资料。

 

1.功能源码

bool OpenCV_Stitching(Mat imageA, Mat imageB)
{
	vector<Mat>images;
	images.push_back(imageA);
	images.push_back(imageB);

	Ptr<Stitcher>stitcher = Stitcher::create();

	Mat result;
	Stitcher::Status status = stitcher->stitch(images, result);// 使用stitch函数进行拼接

	if (status != Stitcher::OK) return false;

	imshow("OpenCV图像全景拼接", result);

	return true;
}

 

2.效果

C++ OpenCV实战之图像全景拼接

这就是使用OpenCV 内置Stitcher拼接出来的效果。

 

二、图像全景拼接

 

1.特征检测

使用方法二进行图像全景拼接。目前网上教程大致流程归为:

1、使用特征检测算子提取两幅图像的关键点,然后进行特征描述子匹配。我这里使用的是SURF算子。当然SIFT等其他特征检测算子也可以。

	//创建SURF特征检测器
	int Hessian = 800;
	Ptr<SURF>detector = SURF::create(Hessian);

	//进行图像特征检测、特征描述
	vector<KeyPoint>keypointA, keypointB;
	Mat descriptorA, descriptorB;
	detector->detectAndCompute(imageA, Mat(), keypointA, descriptorA);
	detector->detectAndCompute(imageB, Mat(), keypointB, descriptorB);

	//使用FLANN算法进行特征描述子的匹配
	FlannBasedMatcher matcher;
	vector<DMatch>matches;
	matcher.match(descriptorA, descriptorB, matches);

C++ OpenCV实战之图像全景拼接

 如图为使用FLANN算法进行特征描述子匹配的结果。我们需要把那些匹配程度高的关键点筛选出来用以下面计算两幅图像的单应性矩阵。

2、筛选出匹配程度高的关键点

	double Max = 0.0;
	for (int i = 0; i < matches.size(); i++)
	{
		//float distance –>代表这一对匹配的特征点描述符(本质是向量)的欧氏距离,数值越小也就说明两个特征点越相像。
		double dis = matches[i].distance;
		if (dis > Max)
		{
			Max = dis;
		}
	}

	//筛选出匹配程度高的关键点
	vector<DMatch>goodmatches;
	vector<Point2f>goodkeypointA, goodkeypointB;
	for (int i = 0; i < matches.size(); i++)
	{
		double dis = matches[i].distance;
		if (dis < 0.15*Max)
		{
			//int queryIdx –>是测试图像的特征点描述符(descriptor)的下标,同时也是描述符对应特征点(keypoint)的下标。
			goodkeypointA.push_back(keypointA[matches[i].queryIdx].pt);
			//int trainIdx –> 是样本图像的特征点描述符的下标,同样也是相应的特征点的下标。
			goodkeypointB.push_back(keypointB[matches[i].trainIdx].pt);
			goodmatches.push_back(matches[i]);
		}
	}

如图为imageA筛选出来的关键点。

C++ OpenCV实战之图像全景拼接

如图为imageB筛选出来的关键点。

C++ OpenCV实战之图像全景拼接

从上图可以看出,我们已经筛选出imageA,imageB共有的关键点部分。接下来,我们需要使用这两个点集计算两幅图的单应性矩阵。

 

2.计算单应性矩阵

计算单应性变换矩阵

    //获取图像A到图像B的投影映射矩阵,尺寸为3*3
    Mat H = findHomography(goodkeypointA, goodkeypointB, RANSAC);
    Mat M = (Mat_<double>(3, 3) << 1.0, 0, imageA.cols, 0, 1.0, 0, 0, 0, 1.0);
    Mat Homo = M * H;

 

3.透视变换

根据计算出来的单应性矩阵对imageA进行透视变换

    //进行透视变换
    Mat DstImg;
    warpPerspective(imageA, DstImg, Homo, Size(imageB.cols + imageA.cols, imageB.rows));
    imshow("透视变换", DstImg);

C++ OpenCV实战之图像全景拼接

如图所示为imageA进行透视变换得到的结果。

 

4.图像拼接

根据上述操作,我们已经得到了经透视变换的imageA,接下来只需将imageA与imageB拼接起来就可以了。

    imageB.copyTo(DstImg(Rect(imageA.cols, 0, imageB.cols, imageB.rows)));
    imshow("图像全景拼接", DstImg);

 

5.功能源码

bool Image_Stitching(Mat imageA, Mat imageB, bool draw)
{
	//创建SURF特征检测器
	int Hessian = 800;
	Ptr<SURF>detector = SURF::create(Hessian);

	//进行图像特征检测、特征描述
	vector<KeyPoint>keypointA, keypointB;
	Mat descriptorA, descriptorB;
	detector->detectAndCompute(imageA, Mat(), keypointA, descriptorA);
	detector->detectAndCompute(imageB, Mat(), keypointB, descriptorB);

	//使用FLANN算法进行特征描述子的匹配
	FlannBasedMatcher matcher;
	vector<DMatch>matches;
	matcher.match(descriptorA, descriptorB, matches);

	double Max = 0.0;
	for (int i = 0; i < matches.size(); i++)
	{
		//float distance –>代表这一对匹配的特征点描述符(本质是向量)的欧氏距离,数值越小也就说明两个特征点越相像。
		double dis = matches[i].distance;
		if (dis > Max)
		{
			Max = dis;
		}
	}

	//筛选出匹配程度高的关键点
	vector<DMatch>goodmatches;
	vector<Point2f>goodkeypointA, goodkeypointB;
	for (int i = 0; i < matches.size(); i++)
	{
		double dis = matches[i].distance;
		if (dis < 0.15*Max)
		{
			//int queryIdx –>是测试图像的特征点描述符(descriptor)的下标,同时也是描述符对应特征点(keypoint)的下标。
			goodkeypointA.push_back(keypointA[matches[i].queryIdx].pt);
			//int trainIdx –> 是样本图像的特征点描述符的下标,同样也是相应的特征点的下标。
			goodkeypointB.push_back(keypointB[matches[i].trainIdx].pt);
			goodmatches.push_back(matches[i]);
		}
	}

	if (draw)
	{
		Mat result;
		drawMatches(imageA, keypointA, imageB, keypointB, goodmatches, result);
		imshow("特征匹配", result);

		Mat temp_A = imageA.clone();
		for (int i = 0; i < goodkeypointA.size(); i++)
		{
			circle(temp_A, goodkeypointA[i], 3, Scalar(0, 255, 0), -1);
		}
		imshow("goodkeypointA", temp_A);

		Mat temp_B = imageB.clone();
		for (int i = 0; i < goodkeypointB.size(); i++)
		{
			circle(temp_B, goodkeypointB[i], 3, Scalar(0, 255, 0), -1);
		}
		imshow("goodkeypointB", temp_B);
	}

	//findHomography计算单应性矩阵至少需要4个点
	/*
	计算多个二维点对之间的最优单映射变换矩阵H(3x3),使用MSE或RANSAC方法,找到两平面之间的变换矩阵
	*/
	if (goodkeypointA.size() < 4 || goodkeypointB.size() < 4) return false;


	//获取图像A到图像B的投影映射矩阵,尺寸为3*3
	Mat H = findHomography(goodkeypointA, goodkeypointB, RANSAC);
	Mat M = (Mat_<double>(3, 3) << 1.0, 0, imageA.cols, 0, 1.0, 0, 0, 0, 1.0);
	Mat Homo = M * H;


	//进行透视变换
	Mat DstImg;
	warpPerspective(imageA, DstImg, Homo, Size(imageB.cols + imageA.cols, imageB.rows));
	imshow("透视变换", DstImg);

	imageB.copyTo(DstImg(Rect(imageA.cols, 0, imageB.cols, imageB.rows)));
	imshow("图像全景拼接", DstImg);

	return true;
}

 

6.效果

C++ OpenCV实战之图像全景拼接

最终拼接效果如图所示。

 

三、源码

#include<iostream>
#include<opencv2/opencv.hpp>
#include<opencv2/xfeatures2d.hpp>
#include<opencv2/stitching.hpp>
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;

//1、使用特征检测算法找到两张图像中相似的点,计算变换矩阵
//2、将A透视变换后得到的图片与B拼接


bool Image_Stitching(Mat imageA, Mat imageB, bool draw)
{
	//创建SURF特征检测器
	int Hessian = 800;
	Ptr<SURF>detector = SURF::create(Hessian);

	//进行图像特征检测、特征描述
	vector<KeyPoint>keypointA, keypointB;
	Mat descriptorA, descriptorB;
	detector->detectAndCompute(imageA, Mat(), keypointA, descriptorA);
	detector->detectAndCompute(imageB, Mat(), keypointB, descriptorB);

	//使用FLANN算法进行特征描述子的匹配
	FlannBasedMatcher matcher;
	vector<DMatch>matches;
	matcher.match(descriptorA, descriptorB, matches);

	double Max = 0.0;
	for (int i = 0; i < matches.size(); i++)
	{
		//float distance –>代表这一对匹配的特征点描述符(本质是向量)的欧氏距离,数值越小也就说明两个特征点越相像。
		double dis = matches[i].distance;
		if (dis > Max)
		{
			Max = dis;
		}
	}

	//筛选出匹配程度高的关键点
	vector<DMatch>goodmatches;
	vector<Point2f>goodkeypointA, goodkeypointB;
	for (int i = 0; i < matches.size(); i++)
	{
		double dis = matches[i].distance;
		if (dis < 0.15*Max)
		{
			//int queryIdx –>是测试图像的特征点描述符(descriptor)的下标,同时也是描述符对应特征点(keypoint)的下标。
			goodkeypointA.push_back(keypointA[matches[i].queryIdx].pt);
			//int trainIdx –> 是样本图像的特征点描述符的下标,同样也是相应的特征点的下标。
			goodkeypointB.push_back(keypointB[matches[i].trainIdx].pt);
			goodmatches.push_back(matches[i]);
		}
	}

	if (draw)
	{
		Mat result;
		drawMatches(imageA, keypointA, imageB, keypointB, goodmatches, result);
		imshow("特征匹配", result);

		Mat temp_A = imageA.clone();
		for (int i = 0; i < goodkeypointA.size(); i++)
		{
			circle(temp_A, goodkeypointA[i], 3, Scalar(0, 255, 0), -1);
		}
		imshow("goodkeypointA", temp_A);

		Mat temp_B = imageB.clone();
		for (int i = 0; i < goodkeypointB.size(); i++)
		{
			circle(temp_B, goodkeypointB[i], 3, Scalar(0, 255, 0), -1);
		}
		imshow("goodkeypointB", temp_B);
	}

	//findHomography计算单应性矩阵至少需要4个点
	/*
	计算多个二维点对之间的最优单映射变换矩阵H(3x3),使用MSE或RANSAC方法,找到两平面之间的变换矩阵
	*/
	if (goodkeypointA.size() < 4 || goodkeypointB.size() < 4) return false;


	//获取图像A到图像B的投影映射矩阵,尺寸为3*3
	Mat H = findHomography(goodkeypointA, goodkeypointB, RANSAC);
	Mat M = (Mat_<double>(3, 3) << 1.0, 0, imageA.cols, 0, 1.0, 0, 0, 0, 1.0);
	Mat Homo = M * H;


	//进行透视变换
	Mat DstImg;
	warpPerspective(imageA, DstImg, Homo, Size(imageB.cols + imageA.cols, imageB.rows));
	imshow("透视变换", DstImg);

	imageB.copyTo(DstImg(Rect(imageA.cols, 0, imageB.cols, imageB.rows)));
	imshow("图像全景拼接", DstImg);

	return true;
}


bool OpenCV_Stitching(Mat imageA, Mat imageB)
{
	vector<Mat>images;
	images.push_back(imageA);
	images.push_back(imageB);

	Ptr<Stitcher>stitcher = Stitcher::create();

	Mat result;
	Stitcher::Status status = stitcher->stitch(images, result);// 使用stitch函数进行拼接

	if (status != Stitcher::OK) return false;

	imshow("OpenCV图像全景拼接", result);

	return true;
}

int main()
{

	Mat imageA = imread("image1.jpg");
	Mat imageB = imread("image2.jpg");
	if (imageA.empty() || imageB.empty())
	{
		cout << "No Image!" << endl;
		system("pause");
		return -1;
	}

	if (!Image_Stitching(imageA, imageB, true))
	{
		cout << "can not stitching the image!" << endl;
	}

	if (!OpenCV_Stitching(imageA, imageB))
	{
		cout << "can not stitching the image!" << endl;
	}

	waitKey(0);
	system("pause");
	return 0;
}


 

总结

本文使用OpenCV C++进行图像全景拼接,关键步骤有以下几点。

1、使用特征检测算子提取两幅图像的关键点,然后进行特征描述子匹配。

2、筛选出匹配程度高的关键点计算两幅图的单应性矩阵。

3、利用计算出来的单应性矩阵对其中一张图片进行透视变换。

4、将透视变换的图片与另一张图片进行拼接。

以上就是C++ OpenCV实战之图像全景拼接的详细内容,更多关于 OpenCV图像全景拼接的资料请关注服务器之家其它相关文章!

原文链接:https://blog.csdn.net/Zero___Chen/article/details/122274445

延伸 · 阅读

精彩推荐
  • C/C++VC小技巧汇总之窗口技巧

    VC小技巧汇总之窗口技巧

    这篇文章主要介绍了VC小技巧汇总之窗口技巧,功能非常实用,对于VC开发有一定借鉴价值,需要的朋友可以参考下...

    C语言程序设计10222021-01-23
  • C/C++C语言SetConsoleCursorInfo函数使用方法

    C语言SetConsoleCursorInfo函数使用方法

    这篇文章介绍了C语言SetConsoleCursorInfo函数的使用方法,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...

    流浪孤儿10862022-03-09
  • C/C++C++ 打开选择文件夹对话框选择目录的操作

    C++ 打开选择文件夹对话框选择目录的操作

    这篇文章主要介绍了C++ 打开选择文件夹对话框选择目录的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    dofaster5852021-10-19
  • C/C++C++读写.mat文件的方法

    C++读写.mat文件的方法

    本文介绍了“C++读写.mat文件的方法”,需要的朋友可以参考一下...

    C++教程网7182020-11-18
  • C/C++C++实现查找二叉树中和为某一值的所有路径的示例

    C++实现查找二叉树中和为某一值的所有路径的示例

    这篇文章主要介绍了C++实现查找二叉树中和为某一值的所有路径的示例,文中的方法是根据数组生成二叉排序树并进行遍历,需要的朋友可以参考下...

    Zhang_H8362021-03-24
  • C/C++C++深度优先搜索的实现方法

    C++深度优先搜索的实现方法

    这篇文章主要介绍了C++深度优先搜索的实现方法,是数据结构中非常重要的一种算法,需要的朋友可以参考下...

    C++教程网6562021-01-28
  • C/C++C++设计模式之备忘录模式

    C++设计模式之备忘录模式

    这篇文章主要介绍了C++设计模式之备忘录模式,本文讲解了什么是备忘录模式、备忘录模式的UML类图、备忘录模式的使用场合等内容,需要的朋友可以参考下...

    果冻想10712021-02-05
  • C/C++介绍C语言中tolower函数的实例

    介绍C语言中tolower函数的实例

    这篇文章主要介绍了介绍C语言中tolower函数的实例,本文列出了该函数的头文件,功能说明等,以及如何使用,以下就是详细内容,需要的朋友可以参考下...

    C语言技术网-码农有道3902021-11-21