脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Golang - 深入Golang中的sync.Pool详解

深入Golang中的sync.Pool详解

2021-05-27 00:59sunsky303 Golang

这篇文章主要介绍了深入Golang中的sync.Pool详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

我们通常用golang来构建高并发场景下的应用,但是由于golang内建的GC机制会影响应用的性能,为了减少GC,golang提供了对象重用的机制,也就是sync.Pool对象池。 sync.Pool是可伸缩的,并发安全的。其大小仅受限于内存的大小,可以被看作是一个存放可重用对象的值的容器。 设计的目的是存放已经分配的但是暂时不用的对象,在需要用到的时候直接从pool中取。

任何存放区其中的值可以在任何时候被删除而不通知,在高负载下可以动态的扩容,在不活跃时对象池会收缩。

sync.Pool首先声明了两个结构体

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
// Local per-P Pool appendix.
type poolLocalInternal struct {
    private interface{}   // Can be used only by the respective P.
    shared  []interface{} // Can be used by any P.
    Mutex                 // Protects shared.
}
 
type poolLocal struct {
    poolLocalInternal
 
    // Prevents false sharing on widespread platforms with
    // 128 mod (cache line size) = 0 .
    pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
}

为了使得在多个goroutine中高效的使用goroutine,sync.Pool为每个P(对应CPU)都分配一个本地池,当执行Get或者Put操作的时候,会先将goroutine和某个P的子池关联,再对该子池进行操作。 每个P的子池分为私有对象和共享列表对象,私有对象只能被特定的P访问,共享列表对象可以被任何P访问。因为同一时刻一个P只能执行一个goroutine,所以无需加锁,但是对共享列表对象进行操作时,因为可能有多个goroutine同时操作,所以需要加锁。

值得注意的是poolLocal结构体中有个pad成员,目的是为了防止false sharing。cache使用中常见的一个问题是false sharing。当不同的线程同时读写同一cache line上不同数据时就可能发生false sharing。false sharing会导致多核处理器上严重的系统性能下降。具体的可以参考伪共享(False Sharing)

类型sync.Pool有两个公开的方法,一个是Get,一个是Put, 我们先来看一下Put的源码。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// Put adds x to the pool.
func (p *Pool) Put(x interface{}) {
    if x == nil {
        return
    }
    if race.Enabled {
        if fastrand()%4 == 0 {
            // Randomly drop x on floor.
            return
        }
        race.ReleaseMerge(poolRaceAddr(x))
        race.Disable()
    }
    l := p.pin()
    if l.private == nil {
        l.private = x
        x = nil
    }
    runtime_procUnpin()
    if x != nil {
        l.Lock()
        l.shared = append(l.shared, x)
        l.Unlock()
    }
    if race.Enabled {
        race.Enable()
    }
}

如果放入的值为空,直接return.检查当前goroutine的是否设置对象池私有值,如果没有则将x赋值给其私有成员,并将x设置为nil。如果当前goroutine私有值已经被设置,那么将该值追加到共享列表。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
func (p *Pool) Get() interface{} {
    if race.Enabled {
        race.Disable()
    }
    l := p.pin()
    x := l.private
    l.private = nil
    runtime_procUnpin()
    if x == nil {
        l.Lock()
        last := len(l.shared) - 1
        if last >= 0 {
            x = l.shared[last]
            l.shared = l.shared[:last]
        }
        l.Unlock()
        if x == nil {
            x = p.getSlow()
        }
    }
    if race.Enabled {
        race.Enable()
        if x != nil {
            race.Acquire(poolRaceAddr(x))
        }
    }
    if x == nil && p.New != nil {
        x = p.New()
    }
    return x
}
  1. 尝试从本地P对应的那个本地池中获取一个对象值, 并从本地池冲删除该值。
  2. 如果获取失败,那么从共享池中获取, 并从共享队列中删除该值。
  3. 如果获取失败,那么从其他P的共享池中偷一个过来,并删除共享池中的该值(p.getSlow())。
  4. 如果仍然失败,那么直接通过New()分配一个返回值,注意这个分配的值不会被放入池中。New()返回用户注册的New函数的值,如果用户未注册New,那么返回nil。

深入Golang中的sync.Pool详解

最后我们来看一下init函数。

?
1
2
3
func init() {
    runtime_registerPoolCleanup(poolCleanup)
}

可以看到在init的时候注册了一个PoolCleanup函数,他会清除掉sync.Pool中的所有的缓存的对象,这个注册函数会在每次GC的时候运行,所以sync.Pool中的值只在两次GC中间的时段有效。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
package main
 
import (
    "sync"
    "time"
    "fmt"
)
 
var bytePool = sync.Pool{
    New: func() interface{} {
        b := make([]byte, 1024)
        return &b
    },
}
 
 
func main()  {
    //defer
    //debug.SetGCPercent(debug.SetGCPercent(-1))
    a := time.Now().Unix()
    for i:=0;i<1000000000;i++{
        obj := make([]byte, 1024)
        _ = obj
    }
    b := time.Now().Unix()
 
    for j:=0;j<1000000000;j++  {
        obj := bytePool.Get().(*[]byte)
        _ = obj
        bytePool.Put(obj)
    }
 
    c := time.Now().Unix()
    fmt.Println("without pool ", b - a, "s")
    fmt.Println("with    pool ", c - b, "s")
}

深入Golang中的sync.Pool详解

深入Golang中的sync.Pool详解

可见GC对性能影响不大,因为shared list太长也会耗时。

总结:

 

通过以上的解读,我们可以看到,Get方法并不会对获取到的对象值做任何的保证,因为放入本地池中的值有可能会在任何时候被删除,但是不通知调用者。放入共享池中的值有可能被其他的goroutine偷走。 所以对象池比较适合用来存储一些临时切状态无关的数据,但是不适合用来存储数据库连接的实例,因为存入对象池重的值有可能会在垃圾回收时被删除掉,这违反了数据库连接池建立的初衷。

根据上面的说法,Golang的对象池严格意义上来说是一个临时的对象池,适用于储存一些会在goroutine间分享的临时对象。主要作用是减少GC,提高性能。在Golang中最常见的使用场景是fmt包中的输出缓冲区。

在Golang中如果要实现连接池的效果,可以用container/list来实现,开源界也有一些现成的实现,比如go-commons-pool,具体的读者可以去自行了解。

参考资料:

go语言的官方包sync.Pool的实现原理和适用场景

sync.Pool源码

到此这篇关于深入Golang中的sync.Pool详解的文章就介绍到这了,更多相关Golang sync.Pool内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://www.cnblogs.com/sunsky303/p/9706210.html

延伸 · 阅读

精彩推荐
  • Golanggo语言获取系统盘符的方法

    go语言获取系统盘符的方法

    这篇文章主要介绍了go语言获取系统盘符的方法,涉及Go语言调用winapi获取系统硬件信息的技巧,具有一定参考借鉴价值,需要的朋友可以参考下 ...

    无尽海3862020-04-24
  • GolangGo语言range关键字循环时的坑

    Go语言range关键字循环时的坑

    今天小编就为大家分享一篇关于Go语言range关键字循环时的坑,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来...

    benben_20154202020-05-23
  • Golang深入浅析Go中三个点(...)用法

    深入浅析Go中三个点(...)用法

    这篇文章主要介绍了深入浅析Go中三个点(...)用法,需要的朋友可以参考下...

    踏雪无痕SS6472021-11-17
  • GolangGolang 语言极简类型转换库cast的使用详解

    Golang 语言极简类型转换库cast的使用详解

    本文我们通过 cast.ToString() 函数的使用,简单介绍了cast 的使用方法,除此之外,它还支持很多其他类型,在这没有多多介绍,对Golang 类型转换库 cast相关知...

    Golang语言开发栈6112021-12-02
  • GolangGolang实现四种负载均衡的算法(随机,轮询等)

    Golang实现四种负载均衡的算法(随机,轮询等)

    本文介绍了示例介绍了Golang 负载均衡的四种实现,主要包括了随机,轮询,加权轮询负载,一致性hash,感兴趣的小伙伴们可以参考一下...

    Gundy_8442021-08-09
  • GolangGO语言字符串处理Strings包的函数使用示例讲解

    GO语言字符串处理Strings包的函数使用示例讲解

    这篇文章主要为大家介绍了GO语言字符串处理Strings包的函数使用示例讲解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加...

    Jeff的技术栈6882022-04-14
  • GolangGo语言基础单元测试与性能测试示例详解

    Go语言基础单元测试与性能测试示例详解

    这篇文章主要为大家介绍了Go语言基础单元测试与性能测试示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助祝大家多多进步...

    枫少文7812021-12-05
  • GolangGo语言实现自动填写古诗词实例代码

    Go语言实现自动填写古诗词实例代码

    这篇文章主要给大家介绍了关于Go语言实现自动填写古诗词的相关资料,这是最近在项目中遇到的一个需求,文中通过示例代码介绍的非常详细,需要的朋...

    FengY5862020-05-14